The journey from taking the lift to walking the stairs

The journey from taking the lift to walking the stairs

How often have we heard that we must take the stairs especially if we need to go to Floor nos. 1/2/3, yet how many times do we take it? It’s an exercise that can be so easily incorporated into everyday life, but awareness yet again doesn’t translate into action.

So a few behavioral scientists put a sign at the bottom of the stairs telling us that walking up the stairs burns about five times as many calories as taking the lift. Sixteen studies analyzed this intervention and found that on average, stair use increased by 50%. Sure this is from a low baseline, because not many people generally use the stairs in the first place, but it does demonstrate that a small nudge can do more than any big-budget-ad-campaign to change behavior. Few stations in Tokyo, Japan like Tamachi station have implemented it by mentioning the number calories burned with each step. And a friend of ours says he feels better while walking up the stairs because he can see how many calories he’s burning with each step.

Of course there’s a way of making climbing stairs fun like the Volkswagen piano staircase, but putting signs is probably a thousand times cheaper.

Source: R.E. Soler, K.D. Leeks, L.R. Buchanan, R.C. Brownson, G.W. Heath and D.H. Hopkins – Point-of-decision prompts to increase stair use: A systematic review update – American Journal of Preventive Medicine 38, no.2 (2010): S 292 – S 300

Behavioural Design for safer public spaces (Mint)

Behavioural Design for public spaces

This article first appeared in Mint on 24th Sep, 2018.

Recently it was reported that a 9W 697 Mumbai-Jaipur flight was turned back to Mumbai after take off as, during the climb the crew forgot to select the bleed switch to maintain cabin pressure. This resulted in the oxygen masks dropping. Thirty out of 166 passengers experienced nose and ear bleeding, some also complained of headache.

Aviation safety experts say such an incident was “extremely rare” as turning on the bleed switch is part of a check-list that pilots are expected to mandatorily adhere to. If turning on a switch that regulated cabin pressure is part of standard protocol, how could the pilots make such a simple, common-sensical error. And more importantly how can such errors be avoided in the future?

Traditional thinking suggests increasing the training of the pilots so that it makes them better and thereby avoid such errors. But training is not a full-proof method of ensuring human errors don’t get repeated. That’s because as long as humans need to rely on their memory to ensure the cabin pressure switch is turned on, errors are bound to happen. Sure check lists work. But that’s still a manual method of ensuring that the switch is turned on. And after repeatedly performing the tasks on the checklists over multiple flights, checklists themselves become routine habitual tasks done without much thinking. Also given that there are multiple tasks pilots need to perform in the 3-4 minutes after taking off, the chance of errors happening during those critical moments becomes high.

So instead of the pilot having to rely on their memory or routine check-lists, the answer to avoid such human errors lies in implementing simple behavioural design nudges. For example, if there was a continuous audio-visual reminder that the bleed switch had not been turned on, it would draw the pilot’s attention and it would be highly likely they would have turned it on. Such an audio-visual reminder was not present in this kind of an older generation of aircraft, and therefore the chance of human error increased.

The Japanese have a term for such error-proofing – poka yoke. This Japanese word means mistake proofing of equipment or processes to make them safe and reliable. These are simple, yet effective behavioural design features that make it almost impossible for errors to occur. The aim of error-proofing is to remove the need for people to think about the products or processes they are using. Some examples of behaviourally designed products used in everyday life are the microwave oven that doesn’t work until the door is shut or washing machines that start only when the door is shut and remains shut till the cycle is over. Elevator doors now have sensors that cause them to not close when there is an obstruction. This prevents injury to someone trying to enter as the doors are closing.

Human behaviour cannot be trusted to be as reliable as a machine. In fact, human behaviour is far from perfect. Yes, the people who operate expensive and complicated machines may be the best trained, but human errors in the form of simple error, lapse of judgment or failure to exercise due diligence are inevitable. According to Boeing, in the early days of flight, approximately 80 percent of accidents were caused by the machine and 20 percent were caused by human error. Today that statistic has reversed. Approximately 80 percent of airplane accidents are due to human error (pilots, air traffic controllers, mechanics, etc.) and 20 percent are due to machine (equipment) failures.

Another instance of how systems could be made safe by applying behavioural design is of airplane emergency evacuations. During the emergency landing of the Emirates flight EK521 at the Dubai airport in 2016, passengers were running to get their bags from the overhead cabins, instead of evacuating the plane. Only when the airplane staff began yelling at them to leave their bags and run, did the passengers finally pay heed to their calls and evacuate. Just a few minutes after the evacuation, the plane caught fire. It was a near miss situation. Had even a few passengers waited to get their bags from the overhead cabins, many of them would have got engulfed in fire. Again the natural instinct to correct such a situation would be to train people to evacuate and get them to listen to the flight’s safety instructions. But behavioural science studies have proven that such efforts are time-consuming, money-draining, unscalable and most importantly ineffective at changing human behaviour. In such an emergency situation, if the overhead cabins were automatically locked, with a label “Locked due to emergency”, passengers would not waste time trying to open them. That would in turn get passengers to behave in the desired manner and evacuate faster.

Sometimes behavioural design nudges are intuitive. Other times they are counter-intuitive. In a fire-drill experiment by behavioural scientist Daniel Pink, he found that placing an obstacle like pillar in the middle of a doorway got people to exit a hall 18% faster than without the pillar. The pillar was an obstacle but it split up people into two streams at the exit. That got people to use each side of the door, which in turn made the flow of people exiting the hall a lot smoother and faster. When the pillar wasn’t there to separate them at the exit, people bottle-necked at the door making the exit slower. Likewise, behavioural design could go a long way to design safer buildings, machines and systems and reduce human errors.






Smart water bottle experiment (incl. video)

 

The Smart Water Bottle Experiment

Drinking water is essential to human health. The amount one should drink varies from person to person based on gender, age, height, weight, physical activity, sweat levels, metabolism level, body temperature, humidity levels, external temperature, altitude, quantity and quality of food intake, quantity and quality of other fluids’ intake and host of other details. When you don’t get enough water, every cell of your body is affected. You lose a lot of electrolytes, including sodium, potassium and chloride, which are essential to your body’s functions. Pretty much all of your cellular communications revolve around sodium and potassium, including muscle contractions and action potentials. Fatigue, lethargy, headaches, inability to focus, dizziness and lack of strength are all signs of dehydration. Nature has given us a powerful alert system – thirst. But in our busy chaotic lives we often ignore it and forget to drink water.

 

 

Behavioural Design vs awareness

There is enough information about why we should drink more water, yet most people feel they don’t drink enough. Education doesn’t change behaviour.

Behavioural change requires a different approach. Drinking water regularly is a good habit. Habits are essentially automatic in nature, where one does not consciously think about the action. In other words, habits are auto-pilot behaviours. For a behaviour to become a habit, it requires three things to come together – trigger, action and reward. When the loop gets completed, the habit sets into place. For example, over a period of time we have gotten used to waking up in the morning (trigger), brushing our teeth (action) and feeling fresh (reward). To create good habits, initially conscious effort is required. However, we humans are lazy, so the lesser the effort to get the habit started, the better. Eg. We forget to drink water during the day. So if there’s a trigger like a reminder from the water bottle, we’re likely to drink water. Over time the action of opening the water bottle because of the reminder can become auto-pilot i.e. become a habit. This approach led us to create a water bottle that glowed and beeped that gently nudged people to drink water 16% more.

 

The Experiment

We chose to do an experiment in an office of one of our corporate clients. The administration department of that company would keep filled-water-bottles on the desk of each employee every morning and refill it once every evening. So we bought the same type of water bottles for our experiment so as to not draw any suspicion amongst participants. And we created two versions of caps. In the first version of the cap, we fitted a chip which recorded the number of times the water bottle was opened. In the second version of the cap, we fitted a chip which recorded the number of times the water bottle was opened and in addition, the cap now glowed and beeped once after every two hours of the water bottle being opened. If the bottle wasn’t opened, then the cap would glow and beep after an hour. When the water bottle was opened, the cap would sense it and stop glowing. In both versions the chip was hidden inside the caps.

Creating prototypes of both versions of water bottle caps took longer and was costlier than we expected (planning fallacy). We could only produce a total of 70 water bottle caps over more than a year. Thirty-five pieces of each version – first version with recording chip without glow and beep and second version with recording chip with glow and beep. Because of being able to produce 70 water bottle caps we chose to randomly select thirty-five participants from the office employees who wished to participate in our experiment.

In week 1 we gave them our similar looking water bottles with the first version of the cap with recording chip hidden in it. In week 2 we replaced the caps with the second version of the cap with the recording chip with the glow and beep. We accounted for data from Monday morning to Friday night in both weeks. We then compared the data of how many times the water bottle was opened with the numbers of hours the employees had spent in office on each day of Week 1 (no glow and beep) and Week 2 (glow and beep). Had we been able to conduct the experiment amongst a larger set of sample, we would have chosen the typical control group and treatment group, but due to the above mentioned capacity, time and money constraints we did a before-and-after format for this experiment.

 

The Results

In week 2 employees opened the water bottles 16% more than in week 1. It means the employees were not sufficiently hydrated with regular water bottles even though they were kept on their desk right in front of their eyes. The simple Behavioural Design of glow and beep water bottle caps got employees to drink 16% more frequently than without the Behavioural Design nudge.

 

Frequently asked questions

Q. How much water does one need?

A. Scientific studies are inconclusive on the amount of water required by an adult. Some say its 3 litres. Some say 2.5 litres. Some (Mayo clinic) say for men its 3 litres and for women its 2.2 litres. But fact is that calculating how much water you need depends upon your gender, age, height, weight, physical activity, sweat levels, metabolism level, body temperature, humidity levels, temperature, altitude, quantity and quality of food intake, quantity and quality of other fluids intake and host of other reasons. It’s extremely difficult to calculate real time hydration levels accurately.

Q. Why didn’t we create a bottle that could calculate how much water each individual person needed?

A. To do that we’d need to know people’s gender, age, height, weight, physical activity, sweat levels, metabolism level, body temperature, humidity levels, temperature, altitude, quantity and quality of food intake, quantity and quality of other fluids intake and host of other details. It’s extremely difficult to calculate real time hydration levels accurately. Sensors and software that can capture all of the above seamlessly are very expensive as of date. Measuring only some of the inputs would lead to an inaccurate result that would be misleading. So we used a simple rule of thumb of drinking water every two hours to stay hydrated.

Q. What’s the best way to judge whether you are hydrated or dehydrated?

A. The most scientific and simplest way to judge whether you are hydrated or dehydrated is to look at the colour of your urine. If your urine is crystal clear it means you’re probably drinking too much water. If its light or mild yellow it means your drinking an adequate amount of water. If its proper yellow or darker it means you need to drink more water. If its brown you need to visit a doctor.

 

Sources:

Mild Dehydration Affects Mood in Healthy Young Women – Lawrence E. Armstrong, Matthew S. Ganio, Douglas J. Casa, Elaine C. Lee, Brendon P. McDermott, Jennifer F. Klau, Liliana Jimenez, Laurent Le Bellego, Emmanuel Chevillotte and Harris R. Lieberman – The Journal of Nutrition – 21 December, 2011.

Mild dehydration impairs cognitive performance and mood of men – Matthew S. Ganioa, Lawrence E. Armstronga, Douglas J. Casaa, Brendon P. McDermotta, Elaine C. Lee, Linda M. Yamamotoa, Stefania Marzano, Rebecca M. Lopez, Liliana Jimenez, Laurent Le Bellego, Emmanuel Chevillotte and Harris R. Lieberman – British Journal of Nutrition – Volume 106 / Issue 10 / November 2011, pp 1535-1543

http://www.scientificamerican.com/article/strange-but-true-drinking-too-much-water-can-kill/

Lawrence E. Armstrong – an international expert on hydration who has conducted research in the field for more than 20 years (professor of physiology in UConn’s Department of Kinesiology in the Neag School of Education)






How Behavioural Design can reduce human errors

How Behavioural Design can reduce human errors

‘We’re only human’ is a term associated with humans of course, but more so with accidents. But if that were our attitude we wouldn’t be able to learn much on how to prevent them in the future. And thankfully that’s not what happened after the train accident on 6th March, 1989 in Glasgow, Scotland.

That afternoon the train driver, pulled out of Bellgrove station and within half a mile, ploughed head-on into a train travelling in the opposite direction. The driver of the other train died along with another passenger. The driver who caused the accident had to be cut free from the wreckage and lost a leg in the accident.

So how and why did the accident happen?

It was the guard’s responsibility to check that all passengers were either on or off the train and that the signal on the station indicated that it was safe for the train to proceed. The guard admitted that he had not checked the signal, partly because it wasn’t easy from his position at the back of the train and he knew the driver would be able to see it clearly from the front. He rang the usual two bells to give a ready-to-start signal. But the signalman confirmed that the signal was red during the whole time. On the other hand, for the driver, the red signal would have been visible for another 13 or 14 seconds, even after pulling away, but he still didn’t notice it. In the final investigation report, the driver got the majority of the blame for the accident, with the guard cited as a contributory factor, because ultimately it is the driver’s responsibility to check that it is safe to proceed.

The accident happened because the driver had built up a simple habit. When he heard the two bells, he acknowledged it and set off without checking the signal himself.

A Behavioural Design solution was used later to prevent such accidents from happening. A reminder switch was put in the driver’s cabin that cut power to the train, when it was activated. Drivers were made to turn it on when they stopped at a station as an extra safety check. Now if they heard the two bells and tried to apply power immediately, the train wouldn’t move. They had to turn off the reminder switch, and that prompted them to check the signal first. But a system, which halts the train automatically, if the driver jumped the red signal, would be an even better Behavioural Design solution.

Source: Making Habits Breaking Habits by Jeremy Dean






Employee performance and happiness talk (Gartner)

Employee performance and happiness talk (Gartner)

Our latest talk was on applying behavioural science for improving employee performance and happiness at the Gartner Symposium ITXPO, Goa for India’s Top 300 CIOs.

Behavioural science experiments on employee performance and happiness show that businesses often operate in ways that are not aligned to principles of human psychology, leading to engagement and motivation levels that are disappointing.

For example, when performance appraisals are done annually, employees are also given feedback on improvement and learning. But behavioural science shows that the focus of employees at that stage is on earning, while learning shuts down. Companies can benefit to a great extent if the ‘scope of improvement’ conversation is done as a separate exercise at a separate time than the performance review and appraisal.

The talk covered behavioural science findings on rewards, recognition, incentives – monetary, non-monetary, experiential; performance appraisal, feedback, teams, collaboration, workplace design, change management, productivity, culture and core values.

Like we always do, the talk focussed on simple but innovative and practical Behavioural Design nudges that could make a big difference in employee performance and happiness.






How an IT company benefited by creating a sterile cockpit

How an IT company benefited by creating a sterile cockpit

‘Sterile cockpit’ is one of the rules of the airline industry, according to which anytime a plane is below 10,000 feet – whether on its way up or down – no conversation is permitted in the cockpit, except what’s directly relevant for flying. No talk about cricket, football, sex, nothing other than focusing on flying. The rule was developed after investigations showed that some aircraft crashes during the 1970s were caused when flight crews were distracted from their instruments by idle chatter in the cockpit.

Meanwhile one IT company had reduced new product development time from 3 years to 9 months due to competitive pressures. That led to a stressful environment. So when workers fell behind schedule, they tended to interrupt their colleagues for quick help and the managers would constantly wander by asking to be updated on projects. This led to software engineers getting interrupted more and more, leading to increased work hours and a vicious cycle of more work and more stress.

Leslie Perlow, a Harvard Business School professor, was apparently responsible for the company trying out a Behavioural Design experiment. They established quiet hours on Tuesday, Thursday and Friday mornings before noon. The attempt was to create a sterile cockpit allowing them to focus on complex bits of coding without being derailed by periodic interruptions.

In the end the group managed to meet its stringent 9-month development goal.

Though this was a very small simple nudge, such ‘right’ behaviors don’t happen naturally – they need to be designed.

Sources:

Sterile cockpit – http://en.wikipedia.org/wiki/Sterile_Cockpit_Rule

Leslie Perlow – http://leslieperlow.com/






What it takes to be an innovator

What it takes to be an innovator

Most of us tend to think that innovators are born geniuses. It’s in their blood. Either you have it or you don’t. But reality is anything but that. Innovation like anything else is a habit that can be designed. Just the way a company called Brasilata has done.

Brasilata is a US$ 170 million manufacturing firm from Brazil that makes various kinds of steel cans. Manufacturing may seem boring but Brasilata is one of the most innovating companies in Latin America. For example in 2012, employees submitted 1,71,916 ideas – an average of 170.4 ideas per employee! Many of the suggestions led to the development of new products. The decision regarding approval and implementation of these ideas is made most of the time by the front line.

For instance, Brasilata came up with a new approach for steel cans designed to carry flammable liquids to meet UN standards. These cans needed to withstand a drop from 4 feet. Most manufacturers did this by thickening the metal layers, which ended up using more raw material. But Brasilata’s employees created a new steel can inspired by car bumpers that collapse on impact. The new steel can be deformed on impact, reducing stress on critical seam. This also reduced the amount of steel used.

In another instance, when the Brazil government rationed energy in 2001 due to severe energy crisis, Brasilata’s employees reduced its energy consumption by 35% and even resold extra energy saved to other companies.

Innovation is so embedded in the employees that two employees came up with a suggestion of eliminating their own jobs! Beat that.

Is innovation in their blood? Are they born with it or has been it designed?

Let’s see what their founders put in place for this to happen. To begin with the employees are called ‘inventors’. It isn’t simply feel good language. When they join the company they are asked to sign an innovation contract. It challenges them to come up with ideas for better products, improve production processes and squeeze costs out of the system. Procedures have been made for them to submit their ideas. Brasilata distributes 15% of its net profits amongst its inventors.

I have no doubt that the journey would have been a difficult one. It probably took a while for employees to become good at inventing. And initially employees might have even felt like imposters with themselves being called inventors. The founders would have created an expectation of failure – not the failure of the mission, but of failure on route.

And yes I forgot to mention that the idea of the two employees of eliminating their job was accepted. Their explanation was that they had eliminated their job positions to increase company profitability and this would in turn be distributed to all; as mentioned previously 15% of Brasilata net profits are shared by the employees. But the two were placed in a new roles because Brasilata has a no dismissal policy. In the opinion of the chief executive officer “job security functions as a safety net which enables the trapeze artist to perform to his best ability without risking his life.”

Source: Brasilata






To overcome big problems, think small

To overcome big problems, think small

Most of the times, when we think of big problems, for example, bad hygiene habits of a nation, we tend to believe that the solution also needs to be as big. But it may not require lots of resources to overcome the big problem. Time and again Behavioural Design has proven that the solution needn’t be big in terms of budgets, effort and resources. Here’s one more nudge/ intervention of Behavioural Design that illustrates the same.

In 1990, Jerry Sternin used to work for Save the Children and was sent to Vietnam to fight malnutrition amongst children. Sternin had read a lot about malnutrition and conventional wisdom indicated that malnutrition was a result of intertwined problems like sanitation, poverty, lack of access to clean water and lack of awareness about nutrition.

Sternin instead chose not to be overwhelmed with such theoretical knowledge. Rather, he traveled to rural villages to find out if there were any very poor kids who were big and healthy than the typical kid in Vietnam. He thought that if these kids were staying healthy against the odds, why couldn’t every kid be healthy?

After observing lots of such families for deviations between healthy kid families and unhealthy kid families, he discovered that mothers of healthy kids were feeding them the same amount of food as mothers of unhealthy kids, but were spreading it across four meals rather than two. Second difference was in the style of feeding – mothers who hand-fed the kids had healthy kids vs the norm of kids feeding themselves. Third most interesting finding was that healthy kids were fed tiny shrimp and crabs, considered appropriate food only for adults by most mothers. The mothers of healthy kids also tossed in sweet-potato greens, considered a low-class food.

Conventionally one would tend to believe that if somehow all the mothers would get to know about these 3 healthy ways of feeding their kids, malnutrition could be eliminated. But Sternin knew that mere awareness does not change behavior. So instead of building an awareness program, Sternin created a community program, in which fifty malnourished families in groups of ten, would meet at a nearby hut each day and prepare food with shrimps, crabs and sweet-potato greens.

Mothers got first hand experience of keeping their sons and daughters healthy. Soon neighboring mothers were convinced by the power of social proof. Within 6 months 65% of the kids were better nourished in that village. The experiment moved to other villages. The community cooking program reached 2.2 million Vietnamese people in 265 villages. A big dent in malnutrition done with a small team and a shoestring budget!

Source: David Dorsey, Fast company, Dec 2000. Jerry Sternin’s presentation at Boston College Center for CSR in April 2008






Ascent + INK talk on Behavioural Design (Video)

Was a privilege to talk at Harsh Mariwala’s Ascent + INK conclave, along with industry stalwarts like Harsh Mariwala, Chairman, Marico and Uday Kotak, Executive Vice Chairman, Kotak Mahindra Bank.

Topics included irrational behaviour of masses, doctors, air travellers, car drivers; inefficacy of campaigns like Swachh Bharat at changing behaviour; why our government and companies in India need to adopt behavioural design; public behaviour change; Bleep, People Power and how Nudge units are being implemented by governments around the world.



Related Posts Plugin for WordPress, Blogger...